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The design of nonlinear photonic Vogel’s spiral based on quasi-crystal theory was demonstrated. Two main parameters of
Vogel’s spiral were arranged to obtain multi-reciprocal circles. Typical structure was fabricated by the near-infrared femto-
second laser poling technique, forming a nonlinear photonic structure, and multiple ring-like nonlinear Raman–Nath
second-harmonic generation processes were realized and analyzed in detail. The structure for the cascaded third-
harmonic generation process was predicted. The results could help deepen the understanding of Vogel’s spiral and
quasi-crystal and pave the way for the combination of quasi-crystal theory with more aperiodic structures.
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1. Introduction

Nonlinear photonic crystals (NPCs) generally refer to materials
with periodic second-order nonlinearity χ�2� and a homo-
geneous refractive index, and they provide a flexible method
to manipulate nonlinear optical parametric processes[1,2]. The
famous quasi-phase-matching condition could be satisfied to
reach efficient optical frequency conversion and generate
entangled photons via spontaneous optical frequency downcon-
version. Meanwhile, transverse reciprocal lattice vectors may
modulate the phase of harmonic waves, achieving nonlinear
wavefront shaping[3–9].
Instead of periodic χ�2� gratings, manyNPCs with non-strictly

periodic structures, such as Fibonacci and chirped lattices,
have been reported widely for broadband or cascaded phase-
matching processes[10–12]. These structures can provide multiple
components in Fourier space to satisfy several phase-matching
conditions at the same time. Among the design method of aperi-
odic NPC structures, the construction of nonlinear photonic
quasi-crystals is an active strategy to obtain the desired recipro-
cal lattice vectors for the required phase-matching process in
any spatial direction[13]. Quasi-crystals are short-range disor-
dered, but long-range ordered structures. In 1984, they were
discovered by Shechtman et al. in an Al-Mn alloy with ex-
tremely rapid cooling, which has a fivefold axis of rotational

symmetry, and is not possible in crystallography[14]. In 2005,
nonlinear photonic quasi-crystals were first proposed by apply-
ing dual-grid quasi-crystal construction[13]. In the past decades,
quasi-phase matching with multi-fundamental wavelengths,
multi-directions, and other functional nonlinear optical devices
based on nonlinear photonic quasi-crystals has been investi-
gated widely[15–24].
Vogel’s spiral is a well-known aperiodic structure with a cen-

trosymmetric pattern in Fourier space[25]. The arrangements
of seeds in Vogel’s spiral could be expressed by the following
equations:

�
r = b

���
n

p
θ = nα

, �1�

where r and θ are the coordinates in the polar coordinate system,
b is the parameter describing the density of the seeds, and n =
0, 1, 2, 3 : : : and α give the azimuthal offset between two adjacent
seeds. When α is the golden angle �φ = �1� ���

5
p �=2, α = 2π=

φ2 ≈ 2.4�, the structure evolves into the famous sunflower lattice,
also called a golden-angle spiral, exhibiting an inner sharp ring
with outer weak rings in the Fourier spatial spectrum[26]. On the
basis of this unique property, the sunflower-structured photonic
crystals, photonic crystal fibers, and nanoparticles have shown
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characteristic performances in complete photonic bandgap,
birefringence, optical orbital angular momentum control, wave
focusing, and mode localization[27–31]. In nonlinear optics, the
sharp ring-like peak in the Fourier spectrum means a possibly
efficient phase-matching process. Thus, the golden-angle spi-
ral-structured NPCs were proven to have a prominent effect
on the enhancement of broadband Čerenkov second-
harmonic generation[32]. This is the sole application example
of Vogel’s spiral in nonlinear optics with the generation of
an annular second-harmonic signal. However, its application
inmultichannel second-harmonic wave production is unknown,
so the application of Vogel’s spiral-structured NPCs in other
fields, such as generation of entangled photon pairs and quan-
tum communication, is restricted.
In this paper, the quasi-crystal theory and Vogel’s spiral were

combined to obtain structures with strong multirings in the
Fourier spatial spectrum. A typical spiral was fabricated by
near-infrared femtosecond laser poling, forming nonlinear pho-
tonic quasi-periodic spirals, and second-harmonic generation
via nonlinear Raman–Nath diffraction was captured and dis-
cussed. Furthermore, a nonlinear photonic quasi-periodic spiral
aiming at cascaded third-harmonic generation was designed.
This work may provide new ideas for the design of hybrid non-
linear photonic structures.

2. Structure Design and Fabrication

In accordance with the Vogel’s spiral expressed by Eq. (1), as a
universal rule, when α is an irrational, the spiral is approximately
homogeneous and isotropic. Hence, diffuse rings constitute the
Fourier spectrum, with the innermost one being far stronger
than the outer ones. When the isotropy is destroyed, e.g., when
α is a rational number, radial arms form in Vogel’s spiral, and
the Fourier spectrum shows several scattered rings instead of a
single strong ring[33]. The isotropy of the golden-angle spiral
must be destroyed on purpose to obtain a spiral with two or
more desired sharp rings near the center in the Fourier spec-
trum. For this aim, the concept of the quasi-crystal could be
borrowed.
Figure 1(a) shows an example of a golden-angle spiral. The

radius of the sharp ring in Fourier space [Fig. 1(d)] relates to
the distance between two adjacent seeds. This distance is nearly
equal in the golden-angle spiral and determined by the param-
eter b in Eq. (1). Here, if α or b is no longer a constant, but an
arrangement of two numbers instead, the distance could vary
drastically from each seed pair to another, and the ring in
Fourier space could split.
The cut-and-project method for quasi-crystal construction

is employed[34]. First, the quasi-crystal is constructed by two
angles, with α1 being the golden angle and α2 = 1.57. A series
of quasi-periodic angles with approximate radian values of 0,
1.57, 3.97, 6.37 : : : could be obtained. In the new spiral, the
(q� 1)th value from the smallest to the largest is set as θ�q� 1�
with q = 0, 1, 2, 3 : : : . The spiral function is as follows:

�
r = b

���
q

p
θ = θ�q� 1� , �2�

where α1 and α2 are the construction parameters for θ�q� 1�.
The quasi-periodic spiral expressed by Eq. (2) with b = 1.70 μm
is shown by Fig. 1(b). This spiral has two elements: a golden-
angle spiral with b = 1.70 μm [Fig. 2(a)] and Vogel’s spiral with
α = α2 and b = 1.70 μm [Fig. 2(b)]. The distance between the
adjacent seeds in Fig. 1(b) is no longer invariable. The Fourier
spectrum of Fig. 1(b) is shown in Fig. 1(e). Two sharp rings near
the central region emerge. Then, the quasi-crystal constructed
by two distances was considered as follows: b1 = 1.50 μm and
b2 = 2.00 μm. Similar to that constructed by two angles, quasi-
period-arranged distance values could be provided by the cut-
and-project method, and the (q� 1)th value from the smallest
to the largest is set as b�q� 1� with q = 0, 1, 2, 3 : : : . The spiral
function is as follows:

�
r = b�q� 1�
θ = qα

, �3�

Fig. 1. (a) Golden-angle spiral with b = 1.70 μm and a total of 3000 points;
(b) nonlinear photonic quasi-periodic spiral structure based on rearrange-
ment of α, with the two construction parameters α1 being the golden angle
and α2 = 1.57, b = 1.70 μm; (c) nonlinear photonic quasi-periodic spiral struc-
ture based on rearrangement of b, with the two construction parameters
b1 = 1.50 μm and b2 = 2.00 μm; (d)–(f) Fourier spatial spectra of (a)–(c).
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where b1 and b2 are the construction parameters for b�q� 1�.
The typical spiral pattern with α being the golden-angle spiral
is shown in Fig. 1(c), and its two elements are exhibited by
Fig. 2(c) (golden-angle spiral, b = b1) and Fig. 2(d) (golden-
angle spiral, b = b2). The corresponding Fourier spatial spec-
trum of Fig. 1(c) is exhibited in Fig. 1(f). Two sharp rings can
be found, with another external one with weaker strength.
These results indicate that the nonuniformity of α and b could
be utilized for multiring-like peaks in Fourier space.
For nonlinear photonic quasi-periodic spirals, the radius of

rings in the Fourier spatial spectrum indicates the magnitude
of the reciprocal lattice vector, which is pivotal in quasi-phase
matching. So, a definite relationship between the ring radius
and elements of the quasi-periodic spiral is essential. As shown
in the quasi-periodic spiral in Fig. 1(b), the radii of the two rings
in its Fourier spectrum [Fig. 1(e)] were calculated to be 1.29 and
2.21 μm−1. The Fourier spectra in Figs. 2(a) and 2(b) are shown
by Figs. 2(e) and 2(f). In Fig. 2(e), a sharp ring with a radius of
2.04 μm−1 emerges, which is separated from the two in Fig. 1(e).
As shown in Fig. 2(f), no available ring-like reciprocal lattice
vectors are present due to the formation of radial arms in
Fig. 2(b). The quasi-periodic spiral expressed by Eq. (2) with dif-
ferent construction parameters was studied, and the ring radius
in Fourier spatial spectrum can be hardly predicted. In other
words, the numerical relationship between the radius of the two
rings in Fig. 1(e) with α1 and α2 is uncertain, which is not friendly
for the design of the desired centrosymmetric ring-like reciprocal
lattice vectors by a quasi-periodic spiral following Eq. (2).
Two elements of the quasi-periodic spiral shown in Fig. 1(c)

are demonstrated by Figs. 2(c) and 2(d), with Figs. 2(g) and 2(h)
exhibiting their Fourier spectra. On the basis of the basic
characteristic of being a golden-angle spiral, a sharp ring near
the center is located in both of the two patterns. Their radii
were calculated to be 1.75 [Fig. 2(g)] and 2.28 μm−1 [Fig. 2(h)].
In Fig. 1(c), the rearranged b1 and b2 do not break the isotropy of
the spiral but only change the average distance of the adjacent
seeds from one constant to two constants. So, the radii of the
innermost and middle rings in Fig. 1(f) were calculated to be
the same as the ones shown in Figs. 2(f) and 2(h). In other words,
as long as two golden-angle spirals with ring-like reciprocal lat-
tice vector of given magnitude are designed, the quasi-periodic
spiral simultaneously providing the two annular vectors could
be obtained by the combination of the two golden-angle spirals
following Eq. (3). For deep understanding of this method, the
relation between the radius of the ring in the Fourier spectrum
with b in Eq. (1) can be considered. In a golden-angle spiral, the
radius of the ring is inversely proportional to the average particle
spacing of the structure, which is determined by b[33]. When b is
a quasi-periodic arrangement of b1 and b2 [Fig. 1(c)],
its manifestation in the Fourier spatial spectrum [Fig. 1(f)]
should correspond with spirals with the two parameters sever-
ally. In addition to the two inner rings, a new ring is present, with
the radius of 2.90 μm−1. This ring comes from the increased
disorder, similar to the rings in Fig. 1(e) by rearrangement of α.
The magnitude of this new ring is also unpredictable.

The spiral shown in Fig. 1(c) was employed for experimental
investigation. The structure was machined out in an x-cut stron-
tium barium niobate ferroelectric crystal (Sr0.61Ba0.39NbO3,
SBN) by using infrared femtosecond laser poling at room tem-
perature[35]. The size of the crystal is 5mm × 5mm × 1mm,
with the x-surfaces being polished for femtosecond laser
processing and nonlinear detection. The SBN crystal was
mounted on a translatable stage that can be moved along the
x, y, and z directions with a resolution of ∼100 nm. The laser
used in processing of this structure is a Ti:sapphire laser system
(Chameleon Ultra II, Coherent) operated at 750 nm with a
pulse width of 141 fs and a repetition frequency of 80 MHz.

Fig. 2. (a) Golden-angle spiral with b = 1.70 μm [an element of quasi-periodic
spiral shown in Fig. 1(b)]; (b) Vogel’s spiral with α = 1.57 and b = 1.70 μm [the
other element of quasi-periodic spiral shown in Fig. 1(b)]; (c) golden-angle
spiral with b = 1.50 μm [an element of quasi-periodic spiral shown in Fig. 1(c)];
(d) golden-angle spiral with b = 2.00 μm [the other element of quasi-periodic
spiral shown in Fig. 1(c)]; (e)–(h) Fourier spatial spectra of (a)–(d).
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The processing light polarized along the z axis of the crystal was
focused by an objective lens (50×, NA = 0.65) with a beam
diameter of 1.2 ± 0.2mm and was incident normally into the
crystal cross the x-surface. This laser focus was about 90 μm
below the x-surface of the crystal. A halogen lamp was used
to illuminate the crystal. When processing the structure, the
laser power was regulated using a half-wave plate and a polar-
izer, and the working pulse energy was regulated to 1.5–4 nJ
during processing. The laser was chopped using an automatic
shutter (SH05, Thorlabs). Each point was flashed 2 times with
the laser to obtain domain inversion effectively[36].

3. Results and Discussion

Second-harmonic generation based on the fabricated nonlinear
photonic quasi-periodic spiral was carried out with a broadband
femtosecond laser source (Chameleon Compact OPO, 1000–
1600 nm) as the fundamental light. The beam was focused
by a 10× microscopic objective (NA = 0.3) and was incident
perpendicular to the crystal surface. The generated second-
harmonic signal was projected onto the light screen at far field,
and then the diffraction pattern of the second-harmonic wave
was photographed using a charge-coupled device (CCD) cam-
era. Different wavelengths (1480–1580 nm) were used for the
observation of the structure. The diffraction patterns produced
using different wavelengths were similar. Typical patterns
obtained with the fundamental wavelengths at 1480 nm are
shown by Fig. 3(a), with three distinct rings present in this
image. The color in this figure is artificial for enhanced
visualization.
The three ring-like second-harmonic waves are produced by

nonlinear Raman–Nath diffraction[37]. The phase-matching
condition could be expressed as follows:

k2 sin θm − Gm = 0: �4�

The geometrical diagram is exhibited in Fig. 3(b), where k1
and k2 represent the wave vectors of the fundamental and
second-harmonic waves; Gm is the reciprocal lattice vector;
θm is the corresponding internal divergence angle of k2 relative
to k1; Δkm is the longitudinal phase mismatch; and m = 1, 2,
and 3 denote the innermost, middle, and outermost ring,
respectively. The three reciprocal lattice vectors provided by
the processed structure are G1 = 1.75 μm−1, G2 = 2.28 μm−1,
and G3 = 2.90 μm−1. The longitudinal phase mismatches of the
three ring-like second-harmonic waves are Δk1 = 0.37 μm−1,
Δk2 = 0.31 μm−1, and Δk3 = 0.23 μm−1. The proportion of vec-
tors in Fig. 3(b) was exaggerated for enhanced visualization.
External divergence angles βm could be obtained by the internal
angles θm, Snell’s law, and the Sellmeier equation of SBN crys-
tal[38]. The measured results are shown in Table 1. They fit
well with the calculated angles. In the as-grown x-cut SBN crys-
tal, spontaneous domains along the z direction providing
random reciprocal lattice vectors in the x–y plane can be
obtained. They can produce random quasi-phase-matched

second-harmonic generation. The transverse bright streaks in
Fig. 3(a) are second-harmonic signals modulated by the spon-
taneous domains[39]. The theoretical external angles of the

Fig. 3. (a) Typical second-harmonic pattern generated by the fabricated
nonlinear photonic quasi-periodic spiral. Three ring-like patterns are modu-
lated by the designed structure via nonlinear Raman–Nath diffraction. The
crosswise line that lies in the middle is produced by spontaneous domains.
(b) Geometrical relation of the phase-matching condition of nonlinear
Raman–Nath diffraction; (c) variation tendency of external angle relying on
fundamental wavelength.

Table 1. Theoretical and Experimental Values of External Nonlinear Raman–
Nath Diffraction Angles with λ = 1480 nm.

β1 β2 β3

Theoretical angle (°) 11.89 15.89 19.79

Experimental angle (°) 11.55 15.54 19.61
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second-harmonic rings that depend on the fundamental wave-
length are shown in Fig. 3(c). As a phase mismatch exists in
nonlinear Raman–Nath diffraction, the external angles change
slowly with the variation of wavelength.
The relative intensities of the three rings in Fig. 3(a) are shown

by the red line in Fig. 4(a). The intensities of second-harmonic
waves produced by nonlinear Raman–Nath diffraction can be
simulated by considering phase mismatch and Fourier compo-
nents following the equation

I2 ∝ c2m sinc2
�
Δkm
2

�
, (5)

where I2 is the intensity of the second-harmonic beam, and cm is
the Fourier coefficient. The modulation by random reciprocal

lattice vectors is ignored in calculation. The theoretical second-
harmonic intensities related to the external diffraction angles
are shown by the black curve in Fig. 4(a), which fits well with
the experimental results. The slight errors may be caused by
the Sellmeier equation and the component of the SBN crystal,
as the refractive indices relate closely with the ratio of Sr and
Ba in SBN.
The demonstrated nonlinear photonic quasi-periodic spiral

by Eq. (3) has an extensive effect in complicated optical fre-
quency conversion processes such as cascaded third-harmonic
generation and spontaneous frequency downconversion. With
third-harmonic generation as an example, appropriate ring-like
reciprocal lattice vectors could realize frequency doubling and
sum frequency generation processes simultaneously. The funda-
mental wavelength is assumed to be 1560 nm and perpendicular
to the spiral, and the spiral was fabricated in the x-cut SBN crys-
tal. Nonlinear Bragg diffraction should be realized without phase
mismatch to obtain a fine conversion efficiency. The phase-
matching diagram is shown in Fig. 4(b) on the basis of a phase-
matching condition as follows:

�
2k1 � GSH = k2
k2 � k1 � GTH = k3

, �6�

where k1, k2, and k3 are the wave vectors of the fundamen-
tal, second-harmonic, and third-harmonic waves, respectively,
and GSH and GTH are the transverse reciprocal lattice vectors
for second- and third-harmonic generation, respectively. In
Fig. 4(b), θSH and θTH are internal divergence angles of k2
and k3 relative with k1. Taking fundamental wavelength and
Sellmeier equation of SBN into consideration, GSH and GTH

should be 3.76 and 7.96 μm−1, respectively, and θSH and θTH
should be 11.95° and 16.43°, respectively, with the correspond-
ing external angles being 27.79° and 41.23°, respectively, to
achieve the geometrical relation in Eq. (6).
The two parameters were calculated to be b1 = 0.93 and

b2 = 0.44 μm for the construction of the quasi-periodic spiral
by Eq. (3) to proceed with the third-harmonic generation via
nonlinear Bragg diffraction on the basis of Eq. (6). In the spiral
shown by Fig. 1(c), the closest distance between two seeds is
1.15 μm, which almost reached the size limitation in femto-
second laser-induced domain inversion. The closest distance
between two seeds in the spiral for third-harmonic generation
is 0.30 μm, which is difficult to fabricate. So, the third-harmonic
generation process was exhibited in theory, and the calculated
pattern containing the inside second-harmonic ring and the out-
side third-harmonic ring is shown in Fig. 4(c). In fact, an outer-
most ring is still present in the Fourier spatial spectrum of the
designed spiral for third-harmonic generation with the radius
of 12.16 μm−1. When the fundamental wavelength is 1560 nm,
this ring may also modulate harmonic waves via nonlinear
Raman–Nath diffraction with the existence of the phase mis-
match. However, the efficiency should be far below the third-
harmonic generation via nonlinear Bragg diffraction. So, the
effect of the outermost ring is ignored in Fig. 4(c). Furthermore,
if other wavelength components could be added in the incident

Fig. 4. (a) Experimental and theoretical curves of second-harmonic intensity
depending on external diffraction angle; (b) phase-matching diagram of third-
harmonic generation in desired nonlinear photonic quasi-periodic spiral; (c) cal-
culated pattern of cascaded third-harmonic and second-harmonic waves.
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fundamental wave, an additional phase-matching condition
could be satisfied. For example, by utilizing the collinear
second-harmonic wave, which is modulated by the random
domains such as the central bright spot in Fig. 3(b), the outer-
most ring could generate another third-harmonic wave when
a light source of 1372 nm is coupled into the incident beam.

4. Conclusion

In summary, a nonlinear photonic quasi-periodic spiral was
designed based on the basis of the combination of Vogel’s spiral
and quasi-crystal theory. Two basic parameters of Vogel’s spiral,
α and b, were rearranged to form a quasi-periodic spiral, which
can provide multiple ring-like peaks in the Fourier spatial spec-
trum. The predictability of the ring radius was discussed, and
the quasi-periodic spiral constructed by the rearrangement of
b was employed for further study. A typical structure was fab-
ricated by femtosecond laser-induced domain inversion in a
ferroelectric SBN crystal to produce a nonlinear photonic quasi-
periodic spiral. Conical second-harmonic generation via nonlin-
ear Raman–Nath diffraction was captured. The characteristics
of the second-harmonic patterns were measured, and they fit
well with the theoretical prediction. The nonlinear photonic
quasi-periodic spiral for cascaded third-harmonic generation
was investigated in theory. The results may help with the exten-
sion of quasi-periodic theory and pave the way for the design of
hybrid nonlinear photonic quasi-periodic spirals.
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